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Abstract—During 3-D video communication, transmission er-
rors such as packet loss could happen to the texture and depth
sequences. View synthesis distortion will be generated when
these sequences are used to synthesize virtual views according
to the depth-image-based rendering method. Depth-value-based
graphical model (DVGM) has been employed to achieve the
accurate packet-loss-caused view synthesis distortion estimation
(VSDE). However, the DVGM models the complicated view
synthesis processes at depth-value level, which costs too much
computation and is difficult to be applied in practice. In this
paper, a depth-bin-based graphical model (DBGM) is developed
where the complicated view synthesis processes are modeled at
depth-bin level so that it can be used for the fast VSDE with 1-D
parallel camera configuration. To this end, several depth values
are fused into one depth bin, and a depth-bin-oriented rule is
developed to handle the warping competition process. Then, the
properties of depth bin are analyzed and utilized to form the
DBGM. Finally, a conversion algorithm is developed to convert
the per-pixel input depth value probability distribution into the
depth-bin format. Experimental results verify that our proposed
method is 8 to 32 times faster and requires 17% to 60% less
memory than the DVGM, with exactly the same accuracy.

Index Terms—3-D video coding, depth-image-based rendering
(DIBR), distortion estimation, graphical model

I. INTRODUCTION

A. Motivation

3-D video technologies have been widely studied recent
years as they can provide immersive 3-D experience. 3-D
videos are usually represented by Multi-view Videos plus
Depth (MVD) [1] format, where the color videos of the 3-D
scenarios are captured by several cameras at different location-
s, and the associated depth videos are obtained by estimation
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algorithms [2] or directly captured by depth cameras [3]. By
transmitting the MVD data, a virtual view between any two
captured views can be rendered in the decoder side utilizing
the Depth Image-based Rendering (DIBR) technology [4],
which has been adopted in the Moving Picture Experts Group
(MPEG) View Synthesis Reference Software (VSRS) [5].

In contrast to the traditional 2-D video (single-view video),
to ensure 3-D real-time visualization at the decoder side, MVD
usually requires more transmission bandwidth. In other words,
when the transmission bandwidth is restricted, network con-
gestion will be more common in 3-D video transmission and
will further cause transmission impairments, such as packet
loss. Due to the predictive nature of the encoder, losing a part
of a frame can cause error propagation to subsequent frames.
This scenario not only introduces errors to the transmitted
texture and depth images, but also affects the quality of the
synthesized view when they are used as references. Besides,
compared with the traditional packet-loss-induced distortion in
single-view videos, where only color information is changed
during 2-D video reconstruction, the distortion in depth videos
may create excessive disparity error, which could lead to
unacceptable geometric distortion in the synthesized virtual
view.

Therefore, in 3-D video system, it is crucial to develop an
accurate algorithm for the encoder to estimate the packet-loss-
induced distortion of the synthesized view at the decoder. It
may help designing various error-resilient tools at the encoder
to improve the quality of 3-D video. In 2-D video transmission,
the well known recursive optimal per-pixel estimate (ROPE)
method [6] is capable of estimating packet-loss-induced dis-
tortion by estimating the first and second moments of each
decoded pixel during encoding. Inspired by this, a ROPE-
like scheme is developed in [7] to estimate the decoder-
side distortion of the synthesized view from encoder, based
on a depth-value-based graphical model (DVGM) that can
handle the complex warping competition during view synthesis
process. However, the main drawbacks of the DVGM are its
high computational and memory costs, making it difficult to
be used in real-time applications. Therefore, a more efficient
view synthesis distortion estimation (VSDE) model is desired.
This is the main motivation of the paper.

B. Related Works

1) VSRS: Various view synthesis algorithms have been
developed in [8]–[11]. In particular, in [11], a region-aware
3-D warping for the DIBR is proposed, which exploits the
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characteristics of different regions in the reference views and
achieves significant computation saving with little degradation
in the synthesis quality. However, the most widely used
algorithms are those in the VSRS3.5 [5], which have superior
performance on synthesis quality especially when the depth
sequences are corrupted as studied in [11]. There are two
modes in VSRS3.5. The 1-D parallel mode is designed for
scenes captured by parallel camera array with only horizontal
disparity, while the general mode has no restriction on the
cameras array. Generally, 1-D parallel mode is more popular
in 3-D video research and applications.

The framework of VSRS3.5 with 1-D parallel mode mainly
contains the warping and blending stages. For the warping
stage, pixels from the original views are projected to the
virtual view, which includes the following steps: i) boundary
detecting and boundary aware splatting are first executed in the
depth map; ii) forward warping is then carried out. During the
forward warping step, the mapping competition could happen,
that is, several pixels in the reference views are mapped to
the same point in the virtual view. To handle this problem,
the depth-value-oriented rule is used in VSRS3.5, where the
reference pixel with the largest depth value (closest to the
camera) is selected as the winner. After that, the blending stage
is carried out, which includes two steps: i) the two warped
views from warping stage are firstly blended into one, which
contains holes; ii) all the holes are filled by an inpainting
operation. By utilizing VSRS3.5, the decoder can obtain the
virtual view at arbitrary location between two neighboring
reference views.

2) Source-Coding-Caused VSDE: Various methods have
been developed to estimate the view synthesis distortion
caused by source coding. In [12], a region-based synthe-
sized view distortion estimation algorithm was proposed for
depth map coding. In [13], a linear model-based virtual view
distortion estimation method is developed and employed to
optimally select the skipping mode for depth map coding. In
[14], for the joint bit allocation between texture and depth
sequences in 3-D video coding, a model-based view distortion
estimation algorithm is developed. In [15], the structured
similarity [16] is used to measure the subjective quality of
the synthesized view, and to optimize the codec. In [17], the
quantization-caused distortion is assumed to be a zero-mean
white noise [18], and the distortion in the synthesized view
is decomposed as the sum of texture image coding distortion
and depth image coding distortion, which could estimate the
virtual view distortion accurately. However, this method also
has high computational complexity. To make a good trade-
off between the actuary and efficiency, a method is developed
in [19] to achieve a virtual view PSNR estimation directly
without rendering virtual views. Besides, this method is also
friendly for parallel implementation due to its row-by-row
processing order.

3) Transmission-Error-Caused VSDE: The algorithms
above only considered the impact of source coding on the
synthesized view rather than the impact of transmission error.
In [20], a recursive distortion model is developed for multi-
view video transmission over lossy packet-switched networks,
which estimates the expected channel-induced distortion at

both the frame and sequence levels. However, this algorithm
does not consider the MVD format. To relate the disparity
errors caused by packet loss in the depth maps to the distortion
contribution in the synthesized view, a quadratic model is
proposed in [21]. In [22]–[24], to make the reference frame
selection and optimize the quantization parameter, a quadratic-
model-based distortion estimation is developed and used at
the encoder. However, The overall transmission distortion
estimation framework used in [22]–[24] is the block-based
recursive approach and its estimation accuracy is quite limited.
In [25], to improve error resilience of MVD, an end-to-end
distortion model for MVD-based 3-D video transmission is
proposed for rate-distortion optimized mode selection, where
both the end-to-end distortions in the rendered view and the
compressed texture video are characterized. Then, the view
synthesis prediction is also considered in [26]. Note that it
only focuses on modeling the right reference view. However,
it still ignores some details in the complex view synthesis
process. Therefore, its estimation accuracy is not optimal.
Another drawback is its high computational complexity.

In [7], a depth-value-based graphical model (DVGM) is
developed to capture the complicated warping competition
during view synthesis process. Besides, a recursive optimal
distribution estimation (RODE) approach is developed based
on the well known ROPE to generate per-pixel texture and
depth probability distributions. By integrating the RODE into
the DVGM, this approach can estimate the packet-loss-induced
3-D video distortion accurately. However, the DVGM is for-
mulated at depth-value level. Generally, depth value changes
within a certain range may not lead to warping error due
to the 3-D warping rounding operation in DIBR. Therefore,
the DVGM is inefficient in describing the complicated view
synthesis process, and can be sped up for a faster VSDE.

C. Contributions of This Paper
In this paper, a novel efficient depth-bin-based graphical

model (DBGM) is presented for 1-D parallel mode, which can
replace the DVGM in [7]. The main contributions are listed
as follows.

• The concept of depth bin is firstly defined. At the same
time, a depth-bin-oriented warping competition rule is
developed.

• The DBGM is developed, which is the first work to for-
mulate the complicated view synthesis process at depth-
bin level to simplify the VSDE.

• The properties of depth bin are studied and utilized to
optimize the DBGM further.

• A conversion of probability distribution between depth
bin and depth value is developed so that it can be used
to integrate the RODE method into the DBGM directly.

• The DBGM method is 8 to 32 times faster and requires
17% to 60% less memory than the DVGM, with exactly
the same accuracy.

The rest of the paper is organized as follows. Section
II reviews the related techniques on the packet-loss-caused
VSDE algorithm proposed in [7]. Section III details the
proposed model. Section IV presents the experimental results,
and Section V concludes this paper.
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II. VSDE ALGORITHM OVERVIEW

In this section, we briefly review the main ideas of the
packet-loss-caused VSDE proposed in [7], which contains the
overall framework of VSDE and the DVGM. The details are
summarized in the appendices.

The framework of VSDE contains two main steps. The first
step is to establish a function to generate the per-pixel expected
distortion in the synthesized view, which is formulated by Eq.
(25) in Appendix. Once the first and second moments of each
synthesized pixel at the receiver are obtained, this function
can be solved. The second step is to represent the required
first and second moments of each pixel in synthesized view at
the receiver with several components, which are formulated by
Eq. (26) and Eq. (27) in Appendix, in which the distributions
of the warped depth pixels are needed.

To generate the distributions of the warped depth pixels, a
depth value-based graphical model (DVGM) was developed
in [7], which contains three main steps. The first step is to
calculate the winning probability of each edge emitting from
reference vertex to warped vertex as formulated in Eq. (28) in
Appendix. Besides, to handel the complex warping competition
scenario, Eq. (28) is implemented with a condition that the
depth value of the winner edge is the largest. The second step
is to sum up all these winning probabilities of edges with
the same starting and ending vertices in order to expresses
the probability of one warped vertex taking the value of one
reference vertex as expressed in Eq. (29) in Appendix. In
the last step, the probability of one warped vertex taking no
value from any reference vertices is calculated in Eq. (30) in
Appendix.

As DVGM assumes that the distribution of random noise is
known, the per-pixel distribution in the reference depth images
can be derived. Finally, the distribution of the synthesized
depth pixel is obtained according to Eq. (29) and Eq. (30).
Hence, the view synthesis distortion is finally estimated. In
fact, the initial per-pixel distribution in both reference texture
and depth images can be derived by the RODE method. The
distribution generated with the RODE depends on several fac-
tors, such as the slice mode selection, packet loss probability,
the error concealment scheme and so on.

There are some drawbacks in the DVGM, which cause
high complexity and large memory storage. In order to obtain
the probability that a warped vertex will take the texture
value from a reference vertex, the winning probability of
each edge emitting from the reference vertex to the warped
vertex is first calculated based on their depth values. Then, the
winning probabilities of all the edges with the same starting
and ending vertices are summed up together. However, all of
these edges describe the same physical event that one reference
vertex will be warped to one reference vertex. Hence, depth-
values-based edge representation is inefficient. Besides, during
winning probability calculation in Eq. (28), a large amount of
information on depth values and locations is needed to be
recorded in advance, which needs large memory. Meanwhile,
the depth value of the winner edge is required to be the largest
during warping competition. Hence, a sorting algorithm is
needed in winning probability calculation in the DVGM, and

these edges are sorted based on their associated depth values,
which is time consuming. In summary, all these disadvantages
in the DVGM are caused by modeling the complicated view
synthesis at the depth-value level.

III. A NOVEL EFFICIENT DEPTH-BIN-BASED GRAPHICAL
MODEL

An important fact in 3-D warping process is that several
depth values could correspond to the same rounded disparity
value due to the rounding operation. This can be represented in
DVGM by multiple edges with different depth values emitting
from reference vertex to warped vertex. This fact has also
been observed and utilized in several video coding papers. For
instance, [27] develops a depth no-synthesis-error (D-NOSE)
model based on this fact, which is used to design depth video
coding. In [28], this fact is utilized to design a quantizer to
represent the physical depth distance with less bits. Different
from [27] and [28], we are the first to use this fact to model
the complicated view synthesis at depth-bin level so that the
complexity and memory consumption of transmission-error-
caused VSDE can be reduced.

In this section, we develop a novel efficient depth-bin-based
graphical model (DBGM), and discuss several main techniques
used in the DBGM. Similar to the DVGM, full pixel precision
of view synthesis is considered in this paper.

A. Depth bin

As reviewed above in the DVGM, each edge corresponds
to a certain depth value with a floating-point disparity. In 1-D
parallel view synthesis, given the depth value d of a point in
the 3-D space, the disparity of its images in the reference view
and virtual view can be obtained by first using the following
equation in [11]:

δ =
f · L · d
255

· ( 1

Znear
− 1

Zfar
) +

f · L
Zfar

, (1)

where δ is the initial floating-point disparity. Znear and Zfar

denote the depth range of the physical scene. f is the camera
focal length. L is the distance between virtual view and
reference view. Eq. (1) can be rewritten as

δ = c1 · d+ c2 , D(d),

c1 =
f · L
255

· ( 1

Znear
− 1

Zfar
) > 0,

c2 =
f · L
Zfar

> 0,

(2)

where c1 and c2 are positive constant. Besides, c1 is usually
smaller than 1. Therefore, δ could be regarded as a positive
linear function of d and represented by D(d). Hence, its
inverse function can be written as

d = D−1(δ). (3)

Then, Eq. (2) is rounded to get the integer disparity:

δR = [D(d)] = [c1 · d+ c2], (4)

where [·] represents the rounding operation, and δR is the
rounded disparity.
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Fig. 1. Illustration of relationships among depth value d, associated floating-
point disparity D(d), depth bin β and rounded disparity δR. δR0 and δR1

are the neighbored integer rounded disparities.

In this paper, we define the set of all the depth values with
the same rounded disparity as a depth bin, which is denoted
as β.

Assuming that the 256 depth values are finally mapped to
N depth bins, N could be expressed as

N = [D(dnear)]− [D(dfar)] + 1,

dnear = 255,

dfar = 0,

(5)

The index of depth bin β is from 0 to N − 1.
Hence, there is an one-to-one relationship between the depth

bin β and rounded disparity δR. The 3-D warping rounding
calculation is reformulated as

δR = β + [D(dfar)] = β + [D(0)], (6)

which will be explained latter in this part.
The relationship between the depth values and their corre-

sponding depth bins can be described by Eq. (7), where ⌈·⌉
and ⌊·⌋ are the ceiling and flooring operations. The details of
derivation are given as follows.

The detailed relationship between the depth values, floating-
point disparities, rounded disparity and depth bin are shown in
Fig. 1, where depth values 0, 1, 2, ... are mapped to floating-
point disparities D(0), D(1), D(2), ... After rounding opera-
tion, some neighboring floating-point disparities will have the
same rounded value. Their corresponding depth values will
form a depth bin, e.g., D(0), D(1) and D(2) will have the
same rounded value δR0. Their corresponding depth values 0,
1 and 2 will form a depth bin with index 0.

Mathematically, to find all the depth values that are included
in the i-th depth bin, we need to find its lower and upper

bounds of depth values, which are denoted as dL,i and dU,i,
respectively.

We start from the first depth bin with index 0. The floating-
point disparities will be rounded into δR0 in the range of t0
and t1, where {

t0 = [D(0)]− 0.5

t1 = [D(0)] + 0.5.
(8)

The corresponding integer boundaries of depth bin with index
0 can be founded from inverse function as follows{

dL,0 = ⌈D−1(t0)⌉ = ⌈D−1([D(0)]− 0.5)⌉ = 0

dU,0 = ⌊D−1(t1)⌋ = ⌊D−1([D(0)] + 0.5)⌋.
(9)

For the depth bin with index i(0 ≤ i ≤ N − 2), we have{
dL,i = ⌈D−1([D(0)]− 0.5 + i)⌉
dU,i = ⌊D−1([D(0)] + 0.5 + i)⌋.

(10)

For the last depth bin with index N − 1, we get{
dL,N−1 = ⌈D−1([D(0)]− 0.5 +N − 1)⌉
dU,N−1 = ⌊D−1([D(0)] + 0.5 +N − 1)⌋ = 255.

(11)

Combining Eq. (9) to (11), we can get Eq. (7). Based on this
equation, we can easily find the depth bin index of any depth
value.

B. Depth-bin-oriented warping competition rule

During 1-D parallel view synthesis, if two vertices with
different locations in reference are warped to the same vertex
in the warped view, there will be a warping competition
between these two vertices. In the traditional depth-value-
oriented warping competition rule, the vertex with the largest
depth value will be chosen as the winner, which is considered
as belonging to the foreground.

In this subsection, we propose a depth-bin-oriented warping
competition rule, from which the vertex with largest depth
bin is chosen as the winner during warping competition.
Essentially, this proposed rule still chooses the largest depth
value as the winner, because the depth values within the largest
depth bin are always larger than those within a smaller one.
This fact is proved as follows.

Assume two vertices A and B with different locations in
the reference view are warped to the same location in the
warped view. Their depth bin are βA and βB , respectively.
Let the indexes of βA and βB be i and j (i > j). Let dL,i

and dU,j respectively denote the smallest depth value (lower
bound) within βA and the largest depth value (upper bound)
within βB . Similarly, as discussed in Eq. (6), we have{

[D(dL,i)] = βA + [D(0)],

[D(dU,j)] = βB + [D(0)],
(12)

 The 0th index of β, corresponds to d ∈ [0, ⌊D−1([D(0)] + 0.5)⌋]
The ith(1 ≤ i ≤ N − 2) index of β, corresponds to d ∈ [⌈D−1([D(0)]− 0.5 + i)⌉, ⌊D−1([D(0)] + 0.5 + i)⌋]
The (N − 1)th index of β, corresponds to d ∈ [⌈D−1([D(0)]− 0.5 +N − 1)⌉, 255]

(7)
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Fig. 2. Depth-bin-based graphical model for view synthesis. The vertexes
on the first line are the pixels from left reference view, which will be warped
to the vertexes on the second line of the virtual view. The big arrows are
the bundles. To exhibit the relationship between the bundle and edge, we
randomly highlight and zoom in bundle bij , which connects vertex Ṽ (i) and
Ṽw(j). We can clearly find bundle bij includes edge e0ij to edge es−1

ij , which
have the same starting and ending and represented with black dotted line.

since i > j, we get

[D(dL,i)]− [D(dU,j)] = βA − βB = i− j > 0. (13)

As D(d) is positive linear function with respect to d, we
always have dL,i > dU,j . Therefore, the depth values within
a larger depth bin index are always larger than those in a
depth bin with smaller index. Our depth-bin-oriented warping
competition rule still chooses the largest depth value as the
winner. However, in the worst case (warping competition),
256 depth value indexes will be compared in depth-value-
oriented warping competition rule, while less number of depth
bin indexes will be considered in our rule. Therefore, it is more
efficient to use our rule during warping competition.

C. Depth-bin-based graphical model

In this part, we use the defined depth bin to build a fast
graphical model, which can efficiently capture the interaction
between the vertices and the warping competition operation
during view synthesis.

Different from the DVGM, all the edges (each edge corre-
sponds to a depth value) with the same starting and ending are
grouped into a bundle (each bundle corresponds to a depth bin)
in our model, as shown in Fig. 2. We use different colors to
represent different vertices texture values. Therefore, all the
edges emitting from each vertex in the reference view will
be grouped into several bundles in our proposed model. The
number of bundles used in our model is usually several times
smaller than that of edges used in the DVGM. This can largely
reduce the complexity of the model.

To obtain the probability of one vertex taking the value of
another, instead of calculating the winning probability of each
individual edge first and then summing up the probabilities of
all the edges with the same starting and ending, we can directly
calculate the winning probability of the bundle between these
two vertices.

As shown in Fig. 2, we assume that only Ṽ (1) to Ṽ (n)
are connected to Ṽw(i). The bundle between Ṽ (j) and Ṽw(i)
and its associated depth bin are denoted as bji and β(bji),
respectively. Based on the depth-bin-oriented warping com-
petition rule, when the bundle bji is the final winner, its

β(bji) should be the largest. Therefore, all the bundles emitted
from previous vertices Ṽ (z) (z = 1, ..., j − 1) to Ṽw(i) with
condition β(bzi) ≥ β(bji), denoted by a set S3 (which is

smaller than
j−1∪
z=1

Sz,1 in Eq. (28) in Appendix), should be

abandoned. Similarly, all the bundles emitted from subsequent
vertices Ṽ (z) (z = j + 1, ..., n) to Ṽw(i) with condition
β(bzi) > β(bji), denoted by a set S4 (which is smaller than

n∪
z=j+1

Sz,2 in Eq. (28)) should be abandoned as well. Let

P (bji) denote the probability that Ṽ (j) will be warped to
Ṽw(i) with bundle bji. The winning probability of bundle bji
is defined as Pwin(bji), which can be formulated as

Pwin(bji) = P (bji)×
∏
z∈S3

(1− P (bzi))×
∏
z∈S4

(1− P (bzi)).

(14)
In other words, the separated two-step depth-value-based

operations in Eq. (28) and (29) in DVGM are replaced by just
one-step depth-bin-based operations in Eq. (14) in our model.
The complexity can thus be reduced.

As shown in Eq. (6), there is an one-to-one relationship
between depth bin and disparity. Therefore, once the depth bin
of Ṽ (j) is set as β(cji), its associated disparity is confirmed
uniquely and Ṽ (j) will be warped to Ṽw(i) undoubtedly. In
view of this, the probability that Ṽ (j) will be warped to Ṽw(i)
with bundle bji is equivalent to the probability that the depth
bin of Ṽ (j) is set as depth bin β(cji), which is expressed as

P (bji) , P (βj = β(bji)), (15)

where βj denotes the depth bin of Ṽ (j). P (βj = β(bji))
denotes the probability that the depth bin of Ṽ (j) is set as
β(bji). Similarly, we also have

P (bzi) , P (βz = β(bzi)). (16)

Plugging Eq. (15) and (16) in Eq. (14), we can get

Pwin(bji) , P (βj = β(bji))×∏
z∈S3

(1− P (βz = β(bzi)))×∏
z∈S4

(1− P (βz = β(bzi))) ,

(17)

where the depth bin βj should be the largest, when warping
competition occurs. Hence, the sorting algorithm on depth bins
is still needed in Eq. (17). In the next subsection, we will show
that the sorting can be further eliminated.

To generate the probability distribution of the warped virtual
view’s depth bins, the probability of Ṽw(i) taking no value
from any edge is still necessary, which can be obtained by

PṼw(i)(ϕ) =
n∏

j=1

(1− Pwin(bji)). (18)

Based on the observations above, the probability distribution
of the warped virtual view can be generated more easily
by Eq. (17) and Eq. (18) instead of Eq. (28) to Eq. (30).
Additionally, S3 and S4 are usually several times smaller
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Fig. 3. Exhibition on warping competition in 1-D parallel mode. The blue and
green canvases stand for the left and right reference views respectively, which
will be warped to final warped view and represented with the red canvas.

than
j−1∪
z=1

Sz,1 and
n∪

z=j+1

Sz,2, which reduces the associated

operations significantly. It should be noted that the results of
the new method is equivalent to the old method. Next, we will
show that the complexity of Eq. (17) can be further reduced
utilizing the properties of depth bin.

D. Winning probability function optimization according to the
properties of depth bin

Assume vertices Ṽl(1), ..., Ṽl(m) in the left reference view
are warped to the same target Ṽw(p) in the left warped view.
Similarly, vertices Ṽr(1), ..., Ṽr(m) in right reference view are
warped to the target Ṽw(q) in the right warped view. Ṽl(j) is
the j-th left vertex, while Ṽr(j) is the j-th right vertex. The
disparities of vertexes Ṽl(1) and Ṽl(2) are denoted as δR(1,p)

and δR(2,p), respectively. Based on the definition of disparity
in [4], for the left reference view, we have δR(j,p) = Ṽl(j)−
Ṽw(p). Therefore, δR(1,p) is always smaller than δR(2,p), as
shown in Fig. 3. Since the depth bin and rounded disparity
have an one-to-one positive correspondence as discussed in
Eq. (6), we can derive that the depth bin of Ṽl(1) is always
smaller than that of Ṽl(2).

For the general case of left reference view, we always have

β(bjp) < β(bmp), where j < m. (19)

Similarly, since the warp direction in the right reference
view is opposite to that in left reference view, the disparity
is defined as δR(j,q) = Ṽw(q) − Ṽr(j). In other words,
the disparity of Ṽr(1) is always larger than that of Ṽr(2).

Furthermore, we can derive that the depth bin of Ṽr(1) is
always larger than that of Ṽr(2). Therefore, for the general
case of right reference view, we have

β(bjq) > β(bmq), where j < m. (20)

To summarize, in 1-D parallel mode, if each vertex in the
reference views is processed sequentially and independently
in the raster scan order from left to right, and if several
adjacent reference vertices are warped to the same location
in the warped view, these adjacent vertices’ depth bins satisfy
the following property.

Property 1: For the left warped view, the depth bin of each
warped vertex is always larger than those of the previously
warped ones. Whereas, for the right warped view, the depth
bin of each warped vertex is always smaller than those of the
previously warped ones.

According to Property 1, Eq. (17) can be further simplified
into Eq. (21) with the same result. Besides, the sorting
algorithm used to select the largest depth bin can also be
avoided, since Property 1 can be used to predict the largest
depth bin by recording the last (or first) warped vertex in the
left (or right) warped view, when warping competition occurs.
To solve Eq. (21), the depth bins and the locations of vertices
j and z (z ∈ S3

∪
S4) are needed to be recorded in advance,

which incurs substantial memory requirment, especially with
larger S3 or S4. To solve this problem, another property of
depth bin is studied as follows.

As discussed above, the relationship between depth bin
and its associated disparity can be quantitatively calculated
by Eq. (6). For Ṽl(1) and Ṽl(2), which locate at adjacent
integer coordinates, we can easily get β(b2p) − β(b1p) = 1
based on Eq. (6). In general, in the left reference views, the
relationships of these depth bins and their associated locations
can be expressed as follows,

β(bmp)− β(bjp) = m− j. (22)

Similarly, for the right reference view, we have

β(bmq)− β(bjq) = j −m. (23)

These two equations can be regarded as generalizations of
Property 1, which is summarized as follows.

Property 2: In 1-D parallel view synthesis, with full-
pixel precision selection, suppose several adjacent reference
vertices are warped to the same location in the warped view.
Given the location and depth bin of the current reference ver-
tex (such as j and β(bji) in Eq. (21)), and the locations of its

Pwin(bji) =


P (βj = β(bji))×

∏
z∈S4

(1− P (βz = β(bzi))), for left reference view.

P (βj = β(bji))×
∏

z∈S3

(1− P (βz = β(bzi))), for right reference view. (21)

Pwin(bji) =


P (βj = β(bji))×

∏
z∈S4

(1− P (βz = β(bji) + z − j)), for left reference view.

P (βj = β(bji))×
∏

z∈S3

(1− P (βz = β(bji) + j − z)), for right reference view. (24)
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adjacent reference vertices (such as vertices z (z ∈ S3

∪
S4)

in Eq. (21)), we can exactly derive these adjacent reference
vertices’ depth bins (such as β(bzi) in Eq. (21)) using Eq. (22)
and Eq. (23).

Then, Eq. (21) can be further simplified into Eq. (24). To
solve Eq. (24), only three components need to be recorded in
memory in advance, namely, the location of current reference
vertex j and its depth bin, and the locations of its adjacent
reference vertices z. The depth bins of all z are not needed,
which can further save memory.

E. Depth bin probability distribution conversion

Different from the DVGM, the DBGM is formulated based
on depth bin. Therefore, the initial per-pixel depth value
probability distribution in the reference depth maps should
be converted into depth bin probability distribution. In this
subsection, we will introduce a simple way to achieve this
conversion.

For a general case, we assume that the original depth value
(ground truth) of a reference pixel is d, then a discrete noise
distributed in [−a, b] is introduced. The corrupted depth value
de is in the range [d − a, d + b], each with its associated
probability. Then, de will be grouped into depth bins based on
Eq. (7). After that, the probability of de within the same depth
bin will be summed up to generate the their corresponded
depth bin probability distribution, which will be stored in the
memory and further sent to the DBGM to generate the VSDE.

There are two advantages of this conversion. Firstly, it can
reduce the memory cost. In the worst case 256 probabilities
are needed to record the depth value probability distribution
of each 8-bit pixel, while much less numbers are needed to
record the depth bin probability distribution by this conversion.
Secondly, if the packet-loss-caused view synthesis distortion
is required to be estimated, the RODE method can be directly
integrated with this conversion.

For the special case in [7] that a discrete noise signal
which is uniformly distributed in the range of [−σ, σ] is
introduced to simulate errors in reference depth images, our
conversion above can still fully handle it. Besides, some im-
portant theoretical analyses on time and memory consumptions
can be conducted in this case. Generally, the time and memory
consumptions in the DVGM and DBGM are affected by two
factors, namely σ and baseline L in Eq. (1) (the distance
between two reference view).

1) Fixing σ, and increasing baseline distance: for instance,
as the baseline distance increases the running time of both the
DVGM and DBVM will increase. However, the increase in the
DVGM will be less than that of in the DBGM. Similarly, The
memory cost in both the DVGM and DBVM will increase as
well. The reason are analyzed as follows.

For the DVGM, the main computation costs come from
three equations: i) calculating winning probability of a certain
edge as discussed in Eq. (28), ii) summing up the winning
probability of all the edges within the set Ω in Eq. (29),
and iii) generating the probability of hole as discussed in Eq.
(30). Since σ is fixed, the distribution of the depth values
of each pixel is confirmed and the number of edges of each

vertex is constant. Therefore, the computation cost in Eq.
(28) is constant due to its depth-value-based calculation in
the DVGM. However, as the baseline becomes wide, N will
increase according to Eq. (2) and Eq. (5), which means each
set Ω will contain less edges and more set Ω are required to
keep the total number of edges from each vertex unchanged.
More calculation will be spent on Eq. (29) and Eq. (30),
while calculation cost on Eq. (28) remain constant. Therefore,
when baseline increases, the computation cost will be partially
increased. In contrast with the DVGM, the main stage of
computation cost of the DBGM focuses on two equations: i)
calculating winning probability of a bundle as formulated in
Eq. (14), and ii) obtaining the probability of hole as mentioned
in Eq. (18). Both of these two equations are operated based
on depth bins. As baseline gets wider, N will be increased,
which will increase the computation cost in both equations.
Therefore, when baseline increases, the computation cost will
be fully increased.

Since many factors will cause memory cost change, such
as the algorithm complexity, arguments storage and so on. As
baseline increases, on the one hand, the complexity of both
of these two methods will be increased undoubtedly. On the
other hand, it also increases the number of variables used in
the equations above and finally leads to increased memory
cost.

2) Fixing baseline distance, and increasing σ: generally,
when σ increases, the running time and memory cost in both
the DVGM and DBGM will increase.

In detail, as σ increases, the number of possible depth values
for each vertex in the DVGM must be increased with the
same scale, but the growth of σ may not bring the same
growth for depth bins, because each depth bin in the DBGM
represents several depth values. Therefore, our proposed model
shows better performance in terms of efficiency, when larger
distortion exists in reference depth images. Undoubtedly, the
increase of σ will increase the algorithm complexity and
storage in both the DVGM and DBVM.

IV. EXPERIMENTAL RESULTS

To validate the proposed DBGM in this paper, three evalua-
tions are first presented in this section. The first one is efficien-
cy evaluation, which shows that the proposed DBGM is 8 to 32
times faster than the DVGM depending on the conditions. The
second one is the memory cost evaluation, which shows that
the DBGM achieves 17% to 60% of memory saving compared
to the DVGM depending on the conditions. The last one is the
accuracy evaluation, which confirms that the proposed DBGM
can always achieve the same accuracy as the DVGM. Besides,
we also integrate the DVGM and DBGM with the RODE
and further present the accuracy evaluation, which shows that
the integrated DBGM+RODE and DVGM+RODE can achieve
the same accuracy performance during estimating packet-loss-
caused view synthesis distortion.

It should be noted that this paper aims to optimize the
graphical model in the VSDE. Hence, most of the tests in
this section focus on the comparison between DBGM and
DVGM. To get fair comparison, we firstly use the test setup in
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TABLE I
RUNNING TIME COMPARISON BETWEEN DVGM AND DBGM

Sequences Resolution baseline N σ
DVGM (s/f) DBGM (s/f)

Speedup FactorTime1 Time2 Total Time1 Time2 Total

Kendo 1024*768

2(1,3) 25

3 0.037 2.211 2.248 0.038 0.235 0.273 8.22
5 0.039 4.570 4.610 0.038 0.245 0.283 16.30
7 0.039 5.776 5.815 0.038 0.277 0.315 18.48
9 0.038 7.634 7.673 0.037 0.288 0.325 23.64

4(3,5) 25

3 0.037 2.211 2.248 0.036 0.238 0.274 8.20
5 0.039 4.492 4.531 0.038 0.246 0.283 15.99
7 0.039 5.978 6.017 0.038 0.275 0.313 19.23
9 0.039 7.616 7.656 0.038 0.287 0.326 23.52

3(1,5) 49

3 0.038 2.356 2.394 0.037 0.276 0.313 7.65
5 0.039 4.668 4.707 0.038 0.307 0.345 13.65
7 0.037 6.079 6.117 0.038 0.327 0.365 16.76
9 0.039 8.111 8.150 0.037 0.425 0.463 17.62

Balloons 1024*768

2(1,3) 25

3 0.036 2.261 2.298 0.037 0.228 0.265 8.67
5 0.038 4.500 4.538 0.038 0.236 0.274 16.58
7 0.038 5.774 5.812 0.036 0.284 0.320 18.15
9 0.037 7.793 7.830 0.038 0.292 0.330 23.73

4(3,5) 25

3 0.037 2.263 2.300 0.036 0.233 0.269 8.55
5 0.039 4.454 4.493 0.038 0.242 0.280 16.04
7 0.038 6.066 6.104 0.039 0.282 0.321 19.03
9 0.038 7.761 7.799 0.038 0.289 0.327 23.83

3(1,5) 49

3 0.038 2.448 2.486 0.037 0.281 0.318 7.82
5 0.037 4.660 4.696 0.036 0.305 0.342 13.75
7 0.038 6.144 6.182 0.039 0.328 0.366 16.87
9 0.037 8.242 8.279 0.037 0.429 0.466 17.75

Undo Dancer 1920*1088

2(1,3) 21

3 0.103 7.144 7.247 0.097 0.596 0.693 10.45
5 0.099 15.847 15.946 0.099 0.659 0.758 21.03
7 0.097 19.858 19.955 0.098 0.662 0.760 26.27
9 0.098 25.877 25.974 0.102 0.722 0.824 31.54

3(1,5) 41

3 0.099 7.262 7.361 0.102 0.688 0.790 9.32
5 0.101 16.673 16.774 0.102 0.743 0.845 19.85
7 0.102 20.707 20.808 0.099 0.832 0.931 22.36
9 0.102 27.257 27.359 0.099 0.928 1.027 26.64

Newspaper 1024*768 3(2,4) 36

3 0.037 2.268 2.305 0.036 0.229 0.266 8.67
5 0.037 4.738 4.775 0.036 0.276 0.312 15.29
7 0.039 6.331 6.371 0.038 0.290 0.328 19.40
9 0.038 8.066 8.104 0.038 0.325 0.363 22.33

Lovebird1 1024*768 5(4,6) 30

3 0.036 2.223 2.260 0.037 0.244 0.281 8.03
5 0.038 4.428 4.467 0.039 0.266 0.305 14.64
7 0.039 5.878 5.917 0.038 0.297 0.334 17.69
9 0.038 7.725 7.763 0.038 0.340 0.379 20.49

Café 1920*1080 3(2,4) 61

3 0.099 7.590 7.689 0.095 0.724 0.819 9.39
5 0.099 15.218 15.317 0.100 0.850 0.951 16.11
7 0.098 19.717 19.815 0.099 1.057 1.156 17.14
9 0.101 25.754 25.855 0.102 1.195 1.297 19.94

[7] that introduces a discrete noise signal which is uniformly
distributed in the range of [−σ, σ] to simulate errors in the
reference depth images. Since the performances of both the
DVGM and DBGM are associated with the distortion of depth
images and the baseline distance, different values of σ and
different baseline distances are chosen to be tested. Finally,
we also record the number of depth bins N used in our
model in each sequence. The results are exhibited in Sec IV.A,
B, and C.1. Then, a setup on the integrated DBGM+RODE
and DVGM+RODE test is elaborated as follows. Both the
texture and depth images are independently encoded using
H.264/AVC, where three rows of macroblocks are collected
in each slice. The packet loss rates are 2%, 5%, and 8%,
respectively. GOP sizes of 30 and 60 are used. The results
are exhibited in Sec IV.C.2. Besides, as both the DVGM and
DBGM are used to generate the view synthesis distortion
rather than synthesizing virtual views, all the test records in
this section do not include view synthesis operations in both

of these two models.

In this section, all the testing MVD sequences are chosen
from the Common Test Conditions (CTC) of 3DV Core Ex-
periments [29], such as Kendo and Balloons [30] (provided by
Nagoya University), Undo Dancer [31] (provided by Nokia),
Newspaper and Café [32] (provided by Gwangju Institute of
Science and Technology), Lovebird1 [33] (provided by ETRI
and MPEG Korea). The resolutions of these sequences are
listed in TABLE I and TABLE II. The first 100 frames from
sequence Kendo, Balloons, Newspaper, Lovebird1 are selected.
As the DVGM requires a lot of memory, for fair comparison,
we have to choose the first 50 frames of Undo Dancer and
Café in the test.

All the simulations in this paper are tested on a laptop,
namely Dell inspiron 7559 Signature Edition with Intel(R)
Core(TM) i7-6700HQ CPU, 16.00GB memory, and 64-bit
Operating System.
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TABLE II
MEMORY COST COMPARISON BETWEEN DVGM AND DBGM

Sequences Resolution baseline N σ
DVGM (kB) DBGM (kB)

Saving FactorSharable Private Working Sharable Private Working

Kendo 1024*768

2(1,3) 25

3 4320 459752 464072 4336 315356 319692 0.31
5 4332 607700 612032 4336 315416 319752 0.48
7 4332 685636 689968 4332 315572 319904 0.54
9 4336 797976 802312 4336 315608 319944 0.60

4(3,5) 25

3 4332 464488 468820 4332 314500 318832 0.32
5 4336 614724 619060 4332 315548 319880 0.48
7 4336 690744 695080 4336 316064 320400 0.54
9 4332 805940 810272 4332 316160 320492 0.60

3(1,5) 49
3 4336 525928 530264 4336 326596 330932 0.38
5 4336 677620 681956 4332 332464 336796 0.51
7 4332 788208 792540 4320 335372 339692 0.57
9 4336 908548 912884 4324 362660 366984 0.60

Balloons 1024*768

2(1,3) 25
3 4332 453124 457456 4336 315732 320068 0.30
5 4332 605692 610024 4332 316072 320404 0.47
7 4336 678728 683064 4336 317356 321692 0.53
9 4332 797008 801340 4336 317876 322212 0.60

4(3,5) 25

3 4332 459860 464192 4332 315604 319936 0.31
5 4312 613356 617668 4336 315848 320184 0.48
7 4340 689488 693828 4316 317112 321428 0.54
9 4332 806020 810352 4336 317628 321964 0.60

3(1,5) 49
3 4332 500420 504752 4332 327436 331768 0.34
5 4336 652396 656732 4320 331744 336064 0.49
7 4332 747168 751500 4332 334136 338468 0.55
9 4336 865504 869840 4336 352356 356692 0.59

Undo Dancer 1920*1088

2(1,3) 21
3 4336 1022952 1027288 4336 844592 848928 0.17
5 4336 1465220 1469556 4336 844596 848932 0.42
7 4332 1510300 1514632 4336 844600 848936 0.44
9 4324 1905664 1909988 4340 844600 848940 0.56

3(1,5) 41
3 4336 1032556 1036892 4336 844596 848932 0.18
5 4336 1470652 1474988 4332 844640 848972 0.42
7 4340 1531644 1535984 4340 844872 849212 0.45
9 4332 1918956 1923288 4332 846288 850620 0.56

Newspaper 1024*768 3(2,4) 36

3 4336 447100 451436 4336 315592 319928 0.29
5 4336 582244 586580 4332 316452 320784 0.45
7 4340 658096 662436 4336 317056 321392 0.51
9 4336 776560 780896 4336 320040 324376 0.58

Lovebird1 1024*768 5(4,6) 30

3 4336 386232 390568 4336 315320 319656 0.18
5 4332 544612 548944 4336 315324 319660 0.42
7 4336 567692 572028 4332 315384 319716 0.44
9 4332 710272 714604 4336 315484 319820 0.55

Café 1920*1080 3(2,4) 61
3 4336 1060956 1065292 4336 836860 841196 0.21
5 4336 1479304 1483640 4336 843480 847816 0.43
7 4336 1571160 1575496 4332 879392 883724 0.44
9 4340 1953598 1957938 4344 889782 894126 0.54

A. Evaluation of efficiency

In this subsection, we compare the running time between
these two models without the RODE integration. The total
running time contains two parts, namely the preparation-stage
time cost and main-stage time cost, which are denoted as
Time1 and Time2 in Table I, and their units are seconds per-
frame. The baseline notation of i(j,k) means that View j and
View k are used to synthesize View i. It can be seen that
our proposed DBGM is 8 to 32 times faster than the DVGM
depending on σ and baseline configurations. The main reasons
are as follows: i) To generate the per-pixel distribution in
the synthesized view using the DVGM, each vertex in the
reference depth images is required to be calculated through
three equations (Eq. (28) to (30)), while only two equations
(Eq. (18) and (24)) are needed in the DBGM. ii) Thanks to the
properties of depth bins, the equations in the DBGM are much
simpler than those in the DVGM, and less items are needed
to be recorded in the memory. Besides, the sorting algorithm

required in Eq. (28) in the DVGM is also avoided in Eq. (24)
in the DBGM. iii) Compared with the redundant depth-value-
oriented equations in the DVGM, the equations in the DBGM
are implemented based on depth bin. In terms of the same σ,
the DBGM needs considering less complexity.

Besides, based on the results in Table I, we can easily find:
i) as we fix σ and increase baseline, the running time of both
the DVGM and DBGM increases. However, the running time
increase factor of the DVGM is less than that of the DBGM.
ii) as we fix baseline and increase σ, the running time of both
the DVGM and DBGM increases as well. All the experimental
results in Table I exactly verifies our theoretical analyses on
time consumption in Sec III.E.

B. Evaluation of memory cost

In this part, we evaluate the memory cost in the DBGM and
DVGM without the RODE integration. The Resouce Monitor
[34] provided by Windows 10 system is used as our testing
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tool. Resouce Monitor can capture a data processing system’s
internal resource utilization, such as memory in real-time. With
its assistance, we can directly obtain the memory consumption
of a program of interest. We use the Working Set in Table II
to represent the total memory of a program, which contains
two components: 1) Sharable, which is the memory allocated
to a program that can be shared to other programs, and 2)
Private, which is the memory allocated to a program that can
only be used by itself, and their units are all kilobyte (kB). As
shown in TABLE II, our proposed DBGM can save 17-60%
of memory compared to the DVGM depending on the σ and
baseline. The main reasons are as follows: i) the complexity
of the DVGM is higher than that of the DBGM, which leads
to much more memory cost focusing on algorithm implement
in the DVGM. ii) to implement the DVGM and DBGM, their
corresponded variables are needed to be stored in the memory
in advance. However, the variables of the DBGM is obviously
less than that of the DVGM, since all the variables of the
DBGM are based on depth bins, which is more sparse than
that of the DVGM. Therefore, the memory cost for storage in
the DVGM is larger than that in the DBGM. As a result, our
proposed DBGM requires less memory cost compared with
the DVGM.

Besides, from the experimental results in Table II, either
increasing σ or baseline will cause the increase of memory
cost in both the DVGM and DBGM, which verifies the our
theoretical analyses on memory consumption in Sec III.E as
well.

C. Evaluation of accuracy

1) We first evaluate the accuracy of these two models
without the RODE integration: The details results are shown
in TABLE III, which are the average results of all the tested
frames in different sequences. When the value of σ changes
from 3 to 9, both methods have an MSE between 40 to 650,
which covers the range of most practical scenarios. Besides,
both these two models can achieve the same accuracy.

2) We then evaluate the accuracy of these two models
with the RODE integration: Frame-by-frame results are ex-
hibited in Fig. 4. We can obviously find that the integrated
DBGM+RODE and DVGM+RODE still can achieve the same
accuracy during estimating packet-loss-caused view synthesis
distortion. Besides, both methods can predict the simulated
distortion trend very well.

From this subsection, we can conclude that both the D-
BGM and DVGM can achieve the same accuracy, no matter
integrated with the RODE or not.

V. CONCLUSION

In this paper, we develop a novel depth-bin-based graphical
model (DBGM), which models the complicated view synthesis
process at depth-bin level so that it can be used for fast
view synthesis distortion estimation. To this end, we first use
depth bins to represent the redundant depth values. Then, the
properties of depth bins are studied and used to optimize the
winning probability function. Finally, we develop a conversion

TABLE III
MSE COMPARISON BETWEEN THE DVGM AND DBGM

Sequences Views N σ
MSE

DifferenceDVGM DBGM

Kendo

2(1,3) 25

3 71.375 71.375 0.000
5 133.345 133.345 0.000
7 295.422 295.422 0.000
9 382.063 382.063 0.000

4(3,5) 25

3 77.901 77.901 0.000
5 138.862 138.862 0.000
7 299.825 299.825 0.000
9 387.310 387.310 0.000

3(1,5) 49

3 274.479 274.479 0.000
5 479.244 479.244 0.000
7 542.914 542.914 0.000
9 603.435 603.435 0.000

Balloons

2(1,3) 25

3 43.770 43.770 0.000
5 57.793 57.793 0.000
7 125.568 125.568 0.000
9 159.660 159.660 0.000

4(3,5) 25

3 51.963 51.963 0.000
5 67.961 67.961 0.000
7 128.424 128.424 0.000
9 158.802 158.802 0.000

3(1,5) 49

3 128.832 128.832 0.000
5 219.285 219.285 0.000
7 241.729 241.729 0.000
9 273.290 273.290 0.000

Undo Dancer

2(1,3) 21

3 100.080 100.080 0.000
5 149.696 149.696 0.000
7 199.265 199.265 0.000
9 262.346 262.346 0.000

3(1,5) 41

3 200.683 200.683 0.000
5 322.019 322.019 0.000
7 407.312 407.312 0.000
9 465.664 465.664 0.000

Newspaper 3(2,4) 36

3 138.716 138.716 0.000
5 442.618 442.618 0.000
7 557.020 557.020 0.000
9 649.192 649.192 0.000

Lovebird1 5(4,6) 30

3 152.030 152.030 0.000
5 257.702 257.702 0.000
7 346.855 346.855 0.000
9 409.659 409.659 0.000

Café 3(2,4) 61

3 259.315 259.315 0.000
5 365.303 365.303 0.000
7 422.483 422.483 0.000
9 456.417 456.417 0.000

technique, which converts the depth value probability distri-
bution in the reference depth maps into depth bin distribution.
This conversion can also be used as a bridge to connect the
RODE and DBGM in order to estimate the packet-loss-caused
view synthesis distortion. Experimental results verify that the
proposed DBGM is faster and consumes less memory than the
DVGM, with exactly the same accuracy.

For the further work, we will try to apply the depth bin
concept to simplify the process of RODE in depth image dis-
tortion estimation. Besides, the sub-pixel precision estimation
will be taken into consideration in the DBGM to enhance
its accuracy during the VSDE. Meanwhile, the region-based
approach will also be considered for the DBGM to further
reduce the complexity of the proposed scheme.

APPENDIX: OVERVIEW OF THE DVGM IN [7]

In [7], to measure the packet-loss-caused view synthesis
distortion, the mean squared error (MSE) is used as distortion
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(a) (b) (c)

Fig. 4. Distortion estimation performance of the DVGM+RODE and DBGM+RODE. (a) Balloons: GOP = 60, packet loss = 2%. (b) Kendo: GOP = 30,
packet loss = 5%. (c) Dancer: GOP = 30, packet loss = 8%.

k

jie

Fig. 5. Depth-value-based graphical model for the view synthesis algorithm.

metric. The expected per-pixel distortion in synthesized view
can be written as

E{D(i)} = E{(Ts(i)− T̃s(i))
2}

= Ts(i)
2 − 2Ts(i)E{T̃s(i)}+ E{T̃s(i)

2},
(25)

where Ts(i) is the correctly synthesized i-th texture pixel in
the virtual view, T̃s(i) is the synthesized texture pixel at the
receiver when the reference texture and depth images contain
random errors. Therefore, once the first and second moments
of T̃s(i) are achieved, synthesized view distortion can be
estimated by this equation.

To represent the relationship between the synthesized view
and the reference views, a weighted blending model is consid-
ered during formulation, where the weight is determinate and
denoted as a. Then, the first and second moments of T̃s(i) are
represented as

E{T̃s(i)} = (1− a)(1− PT̃w1
(i)(ϕ))E\ϕ{T̃w0(i)}

+ a(1− PT̃w0 (i)(ϕ))E\ϕ{T̃w1(i)}

+ PT̃w1 (i)(ϕ)E\ϕ{T̃w0(i)}

+ PT̃w0 (i)(ϕ)E\ϕ{T̃w1(i)}

+ PT̃w0 (i)(ϕ)PT̃w1 (i)(ϕ)E{T̃ I
s (i)},

(26)

E{T̃s(i)
2} = (1− a)2(1− PT̃w1 (i)(ϕ))E\ϕ{T̃w0(i)

2}

+ a2(1− PT̃w0 (i)(ϕ))E\ϕ{T̃w1(i)
2}

+ 2(1− a)aE\ϕ{T̃w0(i)}E\ϕ{T̃w1(i)}
+ PT̃w1 (i)(ϕ)E\ϕ{T̃w0(i)

2}

+ PT̃w0 (i)(ϕ)E\ϕ{T̃w1(i)
2}

+ PT̃w0 (i)(ϕ)PT̃w1 (i)(ϕ)E{T̃ I
s (i)

2},

(27)

where T̃wm(i) (m = 0, 1) is the i-th texture pixel in the
warped view mapped from the left and right texture images
respectively in the presence of errors. E{T̃ I

s (i)
k} is the first

and second moments of an inpainted hole, which is also
determinate. PT̃wm (i)(ϕ) represents the probability of T̃wm(i)

being a hole. E\ϕ{T̃wm
(i)k} denotes the partial k-th moment

of T̃wm(i) when it is not in a hole.
In order to calculate E{T̃s(i)} and E{T̃s(i)

2}, both
PT̃wm (i)(ϕ) (m = 0, 1) and E\ϕ{T̃wm(i)k} are needed. In
the 1-D view synthesis algorithm, since the distributions of the
warped texture pixels are determined by those of the reference
depth maps, once the distributions of the warped depth pixels
are known, the PT̃wm (i)(ϕ) (m = 0, 1) and E\ϕ{T̃wm(i)k}
can be achieved.

In DVGM, for simplicity, assume that only the reference
depth images are affected by random noises with a known
distribution and the noises are independent from pixel to pixel.
The relationship between a reference and the warped depth
map is represented by a bipartite probabilistic graph as shown
in Fig. 5, where vertices Ṽ (j) represents the j-th vertex (or
pixel) in the reference view, and Ṽw(i) is the i-th vertex in
the warped view. As random noise is added, each depth vertex
may contains several different depth values with appropriate
probabilities, which may correspond to several disparities and
further lead to multiple possible warping targets in the warped
view. This is represented by edges emitting from Ṽ (j) to
a number of Ṽw(i) vertices. Each edge corresponds to one
possible warping path with one depth value for Ṽ (j) and the
corresponding probability. For the k-th edge among all the
edges between Ṽ (j) and Ṽw(i), the edge and its associated
depth value are denoted as ekji and d(ekji). Since vertices
unconnected to Ṽw(i) are irrelevant, only Ṽ (1) to Ṽ (n)
are considered. Based on the depth-value-oriented warping
competition rule, when ekji is the final winner, d(ekji) should be
the largest. Hence, all the edges emitted from previous vertices
Ṽ (z) to Ṽw(i) with condition d(elzi) ≥ d(ekji) are denoted by
a set Sz,1 (z = 1, ..., j−1), which is required to be abandoned.
All the edges emitted from subsequence vertices Ṽ (z) to Ṽw(i)
with condition d(elzi) > d(ekji) are denoted by another set Sz,2

(z = j+1, ..., n), which should also be abandoned. Let P (ekji)
denote the probability of edge ekji. The winning probability of
edge ekji is defined as Pwin(e

k
ji), which could be formulated
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as
Pwin(e

k
ji) = P (ekji)×

j−1∏
z=1

(1−
∑

l∈Sz,1

P (elzi))×

n∏
z=j+1

(1−
∑

l∈Sz,2

P (elzi)),

(28)

we define this function as the winning probability function.
Assume all these winning edges between Ṽ (j) and Ṽw(i)

are collected into a set Ω. Then, the probability that Ṽ (j) will
be warped to Ṽw(i) can be expressed as

Pwin(eji) =
∑
k∈Ω

Pwin(e
k
ji), (29)

The probability of Ṽw(i) taking no value from any edge, i.e.,
Ṽw(i) is in a hole, is denoted as PṼw(i)(ϕ), which is expressed
by

PṼw(i)(ϕ) =
n∏

j=1

(1− Pwin(eji)). (30)

Based on Eq. (29) and Eq. (30), the distributions of the
synthesized depth pixels can be achieved, which is based on an
assumption that only the reference depth images are affected
by random noises with a known distribution. Therefore, the
PMFs of both the depth and texture values of each reference
pixel are needed, if DVGM is used to estimate the packet-
loss-caused view synthesis distortion with DVGM.

To handle this, a RODE method is developed, which is a
ROPE-like method. Instead of calculating the first and second
moment of decoded pixel in ROPE, RODE is used to estimate
the PMF of decoded pixel recursively. In RODE, for an intra-
coded pixel, if its data are received, its PMF is simply a
Kronecker delta function with a value of 1 at the location
of the encoder reconstruction and 0 elsewhere. If the pixel is
lost, the PMF from the previous frame will be propagated to
the current frame due to the error concealment. For an inter-
coded pixel, when the pixel is received, the PMF of current
pixel is shifted from that of reference pixel by the residual
value. If the pixel is lost, the PMF from the previous frame is
propagated.

The DVGM assumes that only the reference depth has
errors. When both the reference depth and texture have errors,
the RODE method above and DVGM can be integrated.
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